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The electromagnetic correction of a gyroscope is considered on the assump- 
tion that its magnetic rotor rotates in a solenoid (see [ 11 ) . The control of 
rotor axis displacements is effected by regulating the amplitude and phase of 

current in the solenoid windings. The time-optimal response of the control 

of angular displacement of the rotor axis is investigated. This paper is re - 

lated to [2,3]. 

1. In the correction method described in [ 1 ] the mechanical moment M acting 
on the rotor is determined as the vector product M = pu’ X K, where N is the rotor 
magnetic moment vector rotating in the equatorial plane, and K is the vector of mag- 

netic intensity of the solenoid field, Axes of the moving and fixed coordinate systems 

are shown in Fig. 1, where the OX’ -axis coincides with that of the rotor, OY’Z’ is 

the equatorial plane, and OX is the longitudinal axis of the solenoid. Projections of 
the magnetic moment vector on the moving and fixed axes are defined as follows: 

N,’ = 0, Nr,’ Em N, cm Qt, N,’ = N, sin Qt 

N, = N,’ sin a -NT,’ sin g cos a, N, = N,’ Coa 0, 

N, = NZ’ cos a + N,,’ sin a sin p 

Fig. 1 

The vector of magnetic field intensity in the solenoid has only a longitudinal com- 
ponent he, = K cos (at -!- V) and K, = K, = 0 . The control system is devised so 
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that the field intensity amplitude is subjected to constraint I K I d Ko. By expanding 
the vector product M we obtain for the components of the mechanical moment the 

following expressions: M, = 0, M, = K,N,, and M, = --KDv. Substituting the 
expressions for K,, N V, and N, , we obtain for the mechanical correction moments 

the following formulas : 

M, = K cos (Q t -I- cp) [N, sin 8 t cos a + No cos B t sin a sin j3] (1.1) 
M, = - K cos (Qt + cp)ATo cos 52t cos fi 

We restrict the analysis to the precession motion * and for the motion of the gyro - 
scope axis relative to the fixed coordinates we use the system described in [ 4 1. We have 

The expansion of products cos (st + Cp) ain &-Jr and cos (et + cp) cos Qt shows 

that the expressions for moments in (1.1) contain terms that oscillate at frequency 28, 
and a term with multipliers cos cp, and sin cp. In practiceusually 1 -& 262, and when 

integrating (1.2 ) it is possible to reject, without appreciably affecting accuracy , the 

high-frequency terms for moments and consider the displacements of the rotor axis as 
due only to the action of control functions (terms with cos ‘p, and sin cp ) which are 

a priori known to be smooth in prolonged (in comparison with RCP? intervals of time. 
The parameter K from (1.1) is linear in the right-hand side of (1.2), hence the prob- 

lem of time-optimal response contains only a single controlling parameter, namely the 
phase (p, and the relation K = K o must be satisfied. Using the notation 

KoNo (2H)-l = U, u1 = U cos rp, ua = U sin cp 

we reduce Eqs . (1.2 ) to the form 

a’=u,cosa, g’=ug cOSP ~+ulsinatg~ (1.3) 

The initial conditions for (1.3 ) are : a (0) = 0 and B (0) = 0. The control 

functions are bounded by the constraint u12 + ~22 = U2. By regulating the phase of the 
current in the solenoid windings we control system (1.3 > : tg rp = ua (u&-~. 

05 
Fig. 2 

f a 

The problem consists of: 1) analyzing 
the optimal law of regulating the 
phase with respect to the time required 
for bringing system (1.3 ) from the 
initial state a (0) and p (0) to the 
specified final state oi and fit, in the 
shortest time tf taking into consider- 
ation the constraint on the control 
action ~2 + u22.= u', and 2) to de- 
termine the quasioptimal law of phase 

regulation that would actually effect 
the transition of the system from the 
initial to the specified point in a time 

close to optimal. 
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2. Let us apply the principle of the maximum [ 5 1, The Hamiltonian and the 
equations for the conjugate system are of the form 

( cos a 
H=-l++l~~lcosa+~s u,sinatgfi+u,q 

) (2.1) 

(2.2) 

sin a 
$2 = - 92% 

cosasinfj _ 
cos2 0 - *2u2 cos2 g 

It should be noted that for solving the optimization problem using the procedure 
described in [ 5 ] the right-hand sides of (1.3 ) must be continuous with respect to the 
control and continuously differentiable with respect to constants of state. For this it is 

necessary to consider (1.3 > for 1 B I < fJ* < n / 2, and arbitrary aI After collecting in 
(2.1) terms with a, and u,,we find that the optimal control that maximizes (2.1) is 
defined as follows : 

u1” (Q = fi II f 0-l u7 ua” (d = 12 II f II -‘U (2.3 1 
f = (fi, h), fi = 14~ ~0s a + % sin a tg B, j2 = qa cos a COS-~ B 

Determination of the optimal control that translates the body from the initial to the 
specified final point in the minimum of time is related to the solution of the boundary 
value problem for the system of Eqs . (1.3 ) and (2.2 ) with allowance for formula (2.3 ). 

Since it is hardly possible to obtain u r” (t) and us0 (r) in analytic form, we shall in- 

vestigate the phase trajectories of system (1.3 ) by solving on a computer the system of 

!Zqs . (1.3 > , (2.2 ), and (2.3 ) the specified initial conditions : gl (0) and% (0). 
Vector $ = ($1, $2) can be determined to within the constant multiplier. More- 

over, the optimal controls ~1’ (t) and u so (t) depend, as functions of time, only on the 

ratio & /$i (2.3). Becuase of this we specify the initial conditions for the set of 
conjugate variables as &i = cos 0i, and $si = sin 8i* 

The set of phase trajectories 1 - 4 is shown in Fig. 2 for o > 0, b* > b > 0 and 
u = 2, ei = iA0, A8 = 0.3, i = 1, . . ., 4. It may be pointed out that in the linear 

approximation (1.3 ) the optimal controls are 

u;(t) = Uaf [af2 + @,ZI-“z, u2’ (t) = Uhf [af2 + fif2]-“2 

and $1 = *r(O) = u~~U-~, and $s = & (0) = uz”U-‘. When a and /3 are close to 
zero the phase trajectories are straight lines with gradients tg %. It follows from (3.3 ) 
that the change of signs of ur and ua yields phase trajectories that are symmetric about 
the coordinate origin ; if only the sign of ur is changed, the phase trajectories are sym- 
metric about the p-axis. The dash lines connect points at which the times rf of maxi- 

mum time-optimal response are equal. 
Dependence of the correction current phase q on time is shown in Fig. 3 in the form 

of trajectories numbered 1 - 4 calculated on a computer. It is seen that the optimal 
value of phase cp is virtually constant throughout the control operation time. We shall 
use this feature for constructing a quasi-optimal control that would bring the system to 

point a!, fir with some fixed ~1 and ua which ensure the constancy of phase. 

3. Let us consider (1.3 ) on the assumption that UT and ~2 are independent of 
time. The solution of the first of Eqs . (1.3 ) with allowance for the initial condition 
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a(0) = 0 is of the form 

a=- n/2+2 arm3 (3.1) 

E (t), B (t) = exp ult 

men cos a and sin ~6 are 
functions of time of the form 

co9 a = 2E (t) 11 + Es (t)I-l, 

sin a = [ES (t) - 11 11 + Ea (t)]-1 

After the substi~tion dp cos a 
= dz the second of Eqs. (1.3 ) 

becomes linear 

n A?5 LET t x’ + P f4r = q (4; P (t) = (3, 2) 

Fig. 3 - u1 sm cc, q (t) = u2 co9 a 

The general solution of (3.2) is of the form 

2 = {Sq 0) [exp 5 P Wtl dt + Cl exp {- SP (t) W 

Taking into account that z (0) = sin 8 (0) = 0 and integrating, we obtain for @ 

the expressions 

sin p = % I@ (t) - II I29 (1)1--l, 0 < B q p* (3.3) 

For specified % and % it is necessary to limit the integration time interval to 
0 < t d to using the inequality 

sin fl* > ug [E* (to) - 11 [2uIE (t,)]-l 

From (3.1) and (3.3 ) we obtain the relation of % and % to af and #3/ 

sin pf = u2 (21+)-l Itg (at / 2 + ax / 4) - ctg (ar / 2 - ,z ! 4)l (3.4) 

which can be used for determining ~1 and Us for specified coordinates af and fir of the 
final point (bearing in mind that usa + uga = US). It can be shown that in the case of 
linear approximation af -+ 0 and & + 0 the relationship I+ZQ-~ = &af+, follows 

from (3.4 ) , i. e. for small angles the proposed control becomes the time - optimal 

response, 
Let us estimate the comparative loss of time obtaining with the proposed quasi - 

optimal control law. Using (3.1) for the time of translation from one point to another 

in the quasi-optimal motion we obtain 

tf0 = ul+ In tg (af I 2 4 x f 4) 

We compare it with the time-optimal response motion at points at and pr lying 
on isochrones . The solid curves 1 and 2 in Fig. 4 represent the relative losses of res - 
ponse time in percent Q=(tfo - tf)tf-‘X 100% as functions of f$ for two isochrones 

tf = 0.25 and tf = 0,4 , respectively. 
To compare it with the proposed qu~i-optimal control we consider a control pro- 
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cedure consisting of, first, bringing the system along the 8 -axis from zero to & with 

Fig. 4 

up = U in the time interval tr and, then, convey it form point (9, @) to point (of, Pr) 
in the time interval rs with ui = u. It can be readily shown that 

ti = U-l sin fir, t, = Vu1 In tq (ct-f I 2 + 3t I@, tji = tl f tB 

The dash lines in Fig. 4 denote the relative error in terms of 6, E2 = (trr - tf) 

‘j-1 :c ~OO”~ for the same isochrones , Comparison of the relative error curves shows 
that the time-optimal response of the proposed quasi-optimal control differs from that 
of the optimal by not more than 5%. The second control method, which is fairly simple 
in execution, results in excesses of the time-optimal response time of up to 45%. 

Analysis of the time-optimal response control and of the proposed control, which 
differs from the optimal, based on (1.3 > and curves Ed, and e, (Fig. 4 1 shows that, when 
the coordinates of final points are (of, fir z 0) and (of s 61 @f) , all of the considered 
controls are equivalent as regards their time-optimal response. 
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